Type: FMR

Force Modulation Mode - Reflex coating

Logo
Cantilever Data Value Range*
Resonance Frequency 75 kHz 60 - 90 kHz
Force Constant 2.8 N/m 1.2 - 5.5 N/m
Length 225 µm 220 - 230 µm
Mean Width 28 µm 22.5 - 32.5 µm
Thickness 3 µm 2.5 - 3.5 µm

This AFM probe has alignment grooves on the back side of the support chip.

Pointprobe® AFM tip

Pointprobe® AFM tip

Product Description

NanoWorld® Pointprobe® FM probes are designed for force modulation mode imaging. The force constant of the FM type fills the gap between contact and non-contact probes. Furthermore non-contact or tapping mode imaging is possible with this AFM probe.

All SPM and AFM probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The AFM tip is shaped like a polygon based pyramid with a typical height of 10 - 15 µm.

Additionally, this AFM probe offers typical AFM tip radius of curvature of less than 8 nm.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Standard

Coating: Reflective Aluminum

Aluminum Reflex Coating

The aluminum reflex coating consists of a 30 nm thick aluminum layer deposited on the detector side of the AFM cantilever which enhances the reflectance of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the AFM cantilever.

As the coating is almost stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Order Codes

Order Code Quantity Data Sheet
FMR-10 10 yes
FMR-20 20 yes
FMR-50 50 no
FMR-W 380 yes

NanoWorld® Pointprobe® Silicon AFM Probes Screencast (Standard AFM Tip)

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Haidong Lu, Dong-Jik Kim, Hugo Aramberri, Marco Holzer, Pratyush Buragohain, Sangita Dutta, Uwe Schroeder, Veeresh Deshpande, Jorge Íñiguez, Alexei Gruverman & Catherine Dubourdieu
Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0. 5Zr0. 5O2
Nature Communications. 2024 Jan 29;15(1):860.
DOI: https://doi.org/10.1038/s41467-024-44690-9


Yupanqui-Mendoza, Sergio Luis, and Valdeir Arantes
An enzymatic hydrolysis-based platform technology for the efficient high-yield production of cellulose nanospheres
International Journal of Biological Macromolecules. 2024 Oct 1;278:134602.
DOI: https://doi.org/10.1016/j.ijbiomac.2024.134602


Pinheiro, Ivanei F., Letícia Bizarre, Carlos E. Perles, Filipe Xavier Feitosa, Hosiberto Batista de Sant’Ana, Paulo de Tarso Vieira Rosa, Charlie van der Geest, and Vanessa CB Guersoni
Exploring asphaltene aggregation: Model systems based on toluene-heptane mixtures
Fuel. 2024 Sep 15;372:132152.
DOI: https://doi.org/10.1016/j.fuel.2024.132152


Costa, Guilherme Rezende, Marcus Vinícius Nascimento, Braz de Souza Marotti, and Valdeir Arantes
Reducing hydrophilicity of cellulose nanofibrils through lipase-catalyzed surface engineering with renewable grafting agents
Journal of Polymers and the Environment. 2024 Oct;32(10):5254-71
DOI: https://doi.org/10.1007/s10924-024-03316-3


de Carvalho Benini, Kelly Cristina Coelho, and Valdeir Arantes
Evaluating the reinforcing potential of enzymatic cellulose nanocrystals in polypropylene nanocomposite
Carbohydrate Research. 2024 Aug 1;542:109171.
DOI: https://doi.org/10.1016/j.carres.2024.109171


Dias, Isabella KR, Bruna K. Lacerda, and Valdeir Arantes
High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose
International journal of biological macromolecules. 2023 Jul 1;242:125053
DOI: https://doi.org/10.1016/j.ijbiomac.2023.125053


Feltrin, Felipe da Silva, Natália Aimée D’Angelo, João Paulo de Oliveira Guarnieri, André Moreni Lopes, Marcelo Lancellotti, and Liliane Maria Ferrareso Lona
Selection and control of process conditions enable the preparation of curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles of superior performance.
ACS Applied Materials & Interfaces. 2023 May 23;15(22):26496-509
DOI: https://doi.org/10.1021/acsami.3c05560


Lorevice, Marcos V., Pedro IC Claro, Nadia A. Aleixo, Lívia S. Martins, Marcella T. Maia, Ana PS Oliveira, Diego ST Martinez, and Rubia F. Gouveia
Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation
Chemical Engineering Journal. 2023 Apr 15;462:142166.
DOI: https://doi.org/10.1016/j.cej.2023.142166


Yupanqui-Mendoza, Sergio Luis, Carina Aline Prado, Júlio Cesar dos Santos, and Valdeir Arantes
Hydrodynamic cavitation as a promising pretreatment technology to enhance the efficiency of cellulose nanocrystal production via enzymatic hydrolysis
Chemical Engineering Journal. 2023 Sep 15;472:144821
DOI: https://doi.org/10.1016/j.cej.2023.144821


Rocha, Jaqueline F., Julia C. de Oliveira, Jefferson Bettini, Mathias Strauss, Guilherme S. Selmi, Anderson K. Okazaki, Rafael F. de Oliveira, Renato S. Lima, and Murilo Santhiago
Tuning the chemical and electrochemical properties of paper-based carbon electrodes by pyrolysis of polydopamine
ACS measurement science au. 2023 Dec 15;4(2):188-200
DOI: https://doi.org/10.1021/acsmeasuresciau.3c00063


Bevilacqua, André Sanches, Rafael Bergamo Trinca, and Maria Isabel Felisberti
Ternary segmented polyurethanes: morphology and kinetics of the crystallization
Polímeros. 2023 May 19;33(1):e20230008
DOI: https://doi.org/10.1590/0104-1428.20220123 


de Souza Marotti, Braz, and Valdeir Arantes
Ultra-refining for the production of long-term highly pH-stable lignin nanoparticles in high yield with high uniformity
Green Chemistry. 2022;24(3):1238-58
DOI: https://doi.org/10.1039/D1GC03525H


Dias, Isabella Karoline Ribeiro, Germano Andrade Siqueira, and Valdeir Arantes
Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties
International journal of biological macromolecules. 2022 Nov 1;220:589-600
DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.047


Bedin, Karen Cristina, Beatriz Mouriño, Ingrid Rodriguez-Gutierrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, and Flavio Leandro Souza
Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation
Chinese Journal of Catalysis. 2022 May 1;43(5):1247-57
DOI: https://doi.org/10.1016/S1872-2067(21)63973-6


Sazanova, T.S., Smorodin, K.A., Zarubin, D.M., Otvagina, K.V., Maslov, A.A., Markov, A.N., Fukina, D.G., Mochalova, A.E., Mochalov, L.A., Atlaskin, A.A. and Vorotyntsev, A.V
Morphology effect of zinc oxide nanoparticles on the gas separation performance of polyurethane mixed matrix membranes for CO2 recovery from CH4, O2, and N2
Membranes. 2022 May 31;12(6):577
DOI: https://doi.org/10.3390/membranes12060577


Tsujioka, Kazuma, Yasutaka Matsuo, Masatsugu Shimomura, and Yuji Hirai
A new concept for an adhesive material inspired by clingfish sucker nanofilaments.
Langmuir. 2022 Jan 13;38(3):1215-22
DOI: https://doi.org/10.1021/acs.langmuir.1c02972


Vanderfleet, Oriana M., Jaclyn Winitsky, Julien Bras, Jazmin Godoy-Vargas, Valerie Lafitte, and Emily D. Cranston
Hydrothermal treatments of aqueous cellulose nanocrystal suspensions: effects on structure and surface charge content
Cellulose. 2021 Nov;28:10239-57
DOI: https://doi.org/10.1007/s10570-021-04187-w


Davletbaeva, Ilsiya M., Ilgiz M. Dzhabbarov, Askhat M. Gumerov, Ilnaz I. Zaripov, Ruslan S. Davletbaev, Artem A. Atlaskin, Tatyana S. Sazanova, and Ilya V. Vorotyntsev
Amphiphilic poly (dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate cross-linked block copolymers in a membrane gas separation
Membranes. 2021 Jan 29;11(2):94
DOI: https://doi.org/10.3390/membranes11020094


Sergeev, V. E., V. M. Vorotyntsev, T. S. Sazanova, I. V. Vorotyntsev, and S. V. Kononov
Effect of the Substrate Surface Roughness on the Stability of the Parameters of Thin-Film Resistive Elements
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2020 Sep;14:875-81
DOI: https://doi.org/10.1134/S1027451020050183


Pereira, Barbara, and Valdeir Arantes
Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading
Industrial Crops and Products. 2020 Sep 15;152:112377
DOI: https://doi.org/10.1016/j.indcrop.2020.112377


Sazanova, Tatyana S., Kseniia V. Otvagina, Sergey S. Kryuchkov, Dmitriy M. Zarubin, Diana G. Fukina, Andrey V. Vorotyntsev, and Ilya V. Vorotyntsev
Revealing the surface effect on gas transport and mechanical properties in nonporous polymeric membranes in terms of surface free energy
Langmuir. 2020 Oct 23;36(43):12911-21
DOI: https://doi.org/10.1021/acs.langmuir.0c02140

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: