Type: Arrow™ UHF

Ultra High Frequency – Reflex coating

Logo
Cantilever Data Value Range*
Resonance Frequency 2000 kHz 700 - 2000 kHz
Force Constant Info
Length 35 µm
Mean Width 42 µm
Thickness 0.7 µm 0.5 - 0.9 µm
ARROW™ AFM tip

ARROW™ AFM tip More images

Product Description

Optimized positioning through maximized tip visibility

NanoWorld® Arrow™ ultra high frequency AFM probes are capable of resonating with a very high frequency (typically around 2.0 MHz). This probe type combines outstanding sensitivity with fast scanning ability. All AFM probes of the Arrow™ series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The AFM probes feature a AFM cantilever with a triangular free end and a tetrahedral tip with a typical height of 3 µm.

Additionally, this AFM probe offers an AFM tip radius of curvature of less than 10 nm.

The unique Arrow™ shape with the AFM tip position at the very end of the AFM cantilever allows easy positioning of the AFM tip on the area of interest.

If needed, specific AFM cantilever thicknesses can be selected within very narrow tolerances for an additional fee.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Arrow

Coating: Reflective Aluminum

Aluminum Reflex Coating

The aluminum reflex coating consists of a 30 nm thick aluminum layer deposited on the detector side of the AFM cantilever which enhances the reflectance of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the AFM cantilever.

Order Codes

Order Code Quantity Data Sheet
ARROW-UHF-10 10 Nominal values
ARROW-UHF-20 20 Nominal values

NanoWorld® Arrow™ Ultra High Frequency AFM Probes (UHF) Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Shengnan Chen, Zhaoxin Liu, Haoran Long, Jiaxin Yang, Zheng Li, Zheren Cai, Zhiyuan Qu, Lujing Shao, Xiaosong Shi, Lang Jiang, Wei Xu, Huanli Dong, Zhongming Wei, Yali Qiao and Yanlin Song
A General Vapor-Induced Coating Approach for Layer-controlled Organic Single Crystals
Advanced Functional Materials, Volume 33, Issue 11, March 9, 2023, 2212158
DOI: https://doi.org/10.1002/adfm.202212158


Luke Long, Jiajun Chen, Andrew Neureuther, Patrick Naulleau and Paul Ashby
Spatially resolved dissolution monitoring using AFM
Proc. SPIE 12292, International Conference on Extreme Ultraviolet Lithography 2022, 1229206 (1 December 2022)
DOI: https://doi.org/10.1117/12.2643273


Susrut Akkineni, Cheng Zhu, Jiajun Chen, Miao Song, Samuel E. Hoff, Johan Bonde, Jinhui Tao, Hendrik Heinz, Stefan Habelitz and James J. De Yoreo
Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites
PNAS, May 6, 2022, 119 (19) e2106965119
DOI: https://doi.org/10.1073/pnas.2106965119


Yuwen Zeng, Pavlo Gordiichuk, Takeo Ichihara, Ge Zhang, Emil Sandoz-Rosado, Eric D. Wetzel, Jason Tresback, Jing Yang, Daichi Kozawa, Zhongyue Yang, Matthias Kuehne, Michelle Quien, Zhe Yuan, Xun Gong, Guangwei He, Daniel James Lundberg, Pingwei Liu, Albert Tianxiang Liu, Jing Fan Yang, Heather J. Kulik & Michael S. Strano
Irreversible synthesis of an ultrastrong two-dimensional polymeric material
Nature volume 602, pages 91–95 (2022)
DOI: https://doi.org/10.1038/s41586-021-04296-3


Clodomiro Cafolla and Kislon Voïtchovsky
Real-time tracking of ionic nano-domains under shear flow
Nature Scientific Reports volume 11, Article number: 19540 (2021)
DOI: https://doi.org/10.1038/s41598-021-98137-y


Borys Snopok, Arwa Laroussi, Clodomir Cafolla, Kislon Voïtchovsky, Tetyana Snopok, Vladimir M.Mirsky
Gold surface cleaning by etching polishing: Optimization of polycrystalline film topography and surface functionality for biosensing
Surfaces and Interfaces, Volume 22, February 2021, 100818
DOI: https://doi.org/10.1016/j.surfin.2020.100818


Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay‐Theng Lee, Thomas Bürgi
Deposition of Extended Ordered Ultrathin Films of Au38(SC2H4Ph)24 Nanocluster using Langmuir–Blodgett Technique
Small, Volume 17, Issue 27, Special Issue: Nanoclusters, July 8, 2021, 2005954
DOI: https://doi.org/10.1002/smll.202005954


Wei Deng, Yanling Xiao, Bei Lu, Liang Zhang, Yujian Xia, Chenhui Zhu, Xiujuan Zhang, Jinghua Guo, Xiaohong Zhang, Jiansheng Jie
Water-Surface Drag Coating: A New Route Toward High-Quality Conjugated Small-Molecule Thin Films with Enhanced Charge Transport Properties
Advanced Materials, Volume 33, Issue 5, February 4, 202, 2005915
DOI: https://doi.org/10.1002/adma.202005915
https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adma.202005915


Qijing Wang, Emilio J. Juarez-Perez, Sai Jiang, Mingfei Xiao, Jun Qian, Eun-Sol Shin, Yong-Young Noh, Yabing Qi, Yi Shi and Yun Li
Approaching isotropic transfer integrals in crystalline organic semiconductors
Physical Reiew Materials 4, 044604 ( 2020 )
DOI: https://doi.org/10.1103/PhysRevMaterials.4.044604
https://oist.repo.nii.ac.jp/index.php?action=pages_view_main&active_action=repository_action_common_download&item_id=1658&item_no=1&attribute_id=22&file_no=1&page_id=76&block_id=178


Clodomiro Cafolla and Kislon Voïtchovsky
Impact of water on the lubricating properties of hexadecane at the nanoscale
Nanoscale, 2020, 12, 14504-14513
DOI: 10.1039/D0NR03642K


William Foster, Keisuke Miyazawa, Takeshi Fukuma, Halim Kusumaatmaja and Kislon Voϊtchovsky
Self-assembly of small molecules at hydrophobic interfaces using group effect
Nanoscale, 2020, 12, 5452-5463
DOI: 10.1039/C9NR09505E


Jinwen Wang, Xiaofeng Wu, Jing Pan, Tanglue Feng, Di Wu, Xiujuan Zhang, Bai Yang, Xiaohong Zhang and Jiansheng Jie
GrapheneQuantumDotsInduced CentimeterSized Growth of Monolayer Organic Crystals for HighPerformance Transistors
Advanced Materials, Volume32, Issue38, 2020, 2003315
DOI: https://doi.org/10.1002/adma.202003315
https://www.researchgate.net/profile/Wang-Jinwen/publication/343699816_Graphene-Quantum-Dots-Induced_Centimeter-Sized_Growth_of_Monolayer_Organic_Crystals_for_High-Performance_Transistors/links/5f3b3dcd458515b7292a47b2/Graphene-Quantum-Dots-Induced-Centimeter-Sized-Growth-of-Monolayer-Organic-Crystals-for-High-Performance-Transistors.pdf


Vladimir V. Korolkov, Alex Summerfield, Alanna Murphy, David B. Amabilino, Kenji Watanabe, Takashi Taniguchi and Peter H. Beton
Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy
Nature Communications volume 10, Article number: 1537 (2019)
DOI: https://doi.org/10.1038/s41467-019-09571-6


Pengfei Zhai, Shuai Nan, Lijun Xu, Weixing Li, Zongzhen Li, Peipei Hu, Jian Zeng, Shengxia Zhang, Youmei Sun, Jie Liu
Fine structure of swift heavy ion track in rutile TiO2
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 457, 15 October 2019, Pages 72-79
DOI: https://doi.org/10.1016/j.nimb.2019.07.024
https://arxiv.org/ftp/arxiv/papers/1806/1806.09756.pdf


Jinwen Wang, Wei Deng, Wei Wang, Ruofei Jia, Xiuzhen Xu, Yanling Xiao, Xiujuan Zhang, Jiansheng Jie and Xiaohong Zhang
External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors
Nano Research volume 12, pages2796–2801(2019)
DOI: https://doi.org/10.1007/s12274-019-2515-4
https://www.researchgate.net/profile/Wang-Jinwen/publication/336088723_External-force-driven_solution_epitaxy_of_large-area_2D_organic_single_crystals_for_high-performance_field-effect_transistors/links/5db7fcb992851c8180123099/External-force-driven-solution-epitaxy-of-large-area-2D-organic-single-crystals-for-high-performance-field-effect-transistors.pdf


Jonathan G. Raybin, Julia G. Murphy, Moshe Dolejsi, and S. J. Sibener
Direct Imaging of Interfacial Fluctuations in Confined Block Copolymer with in Situ Slow-Scan-Disabled Atomic Force Microscopy
ACS Nano 2019, 13, 10, 11741–11752
DOI: https://doi.org/10.1021/acsnano.9b05720
http://spacematerialsmuri.uchicago.edu/docs/pubs/184.pdf


Maria J. Cadena, John C. Parker, Arvind Raman and Ronal G. Reifenberger
Fabrication and characterization of mesopores in a silica gel matrix
Materials Research Innovations Volume 22, 2018 - Issue 4
DOI: https://doi.org/10.1080/14328917.2017.1304676


Valerii Sharapov, Qinghe Wu, Andriy Neshchadin, Donglin Zhao, Zhengxu Cai, Wei Chen, and Luping Yu
High Performance Ternary Organic Solar Cells due to Favored Interfacial Connection by a Non-Fullerene Electron Acceptor with Cross-Like Molecular Geometry
Journal of Physical. Chemistry C 2018, 122, 21, 11305–11311
DOI: https://doi.org/10.1021/acs.jpcc.8b03013
https://www.osti.gov/pages/servlets/purl/1461470


Vladimir V. Korolkov, Ivan G. Timokhin, Rolf Haubrichs, Emily F. Smith, Lixu Yang, Sihai Yang, Neil R. Champness, Martin Schröder and Peter H. Beton
Supramolecular networks stabilise and functionalise black phosphorus
Nature Communications volume 8, Article number: 1385 (2017)
DOI: https://doi.org/10.1038/s41467-017-01797-6


Yujia Zhang , Yu Guo , Lei Song , Jun Qian , Sai Jiang , Qijing Wang , Xinran Wang , Yi Shi, Xiaomu Wang and Yun Li
Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors
Journal of Materials Chemistry C, 2017, 5, 11246-11251
DOI: 10.1039/C7TC02348K


Jonathan Raybin, Jiaxing Ren, Xuanxuan Chen, Roel Gronheid, Paul F. Nealey, and S. J. Sibener
Real-Time Atomic Force Microscopy Imaging of Block Copolymer Directed Self Assembly
Nano Letters 2017, 17, 12, 7717–7723
DOI: https://doi.org/10.1021/acs.nanolett.7b03881
http://sibener-group.uchicago.edu/docs/pubs/174.pdf


Qijing Wang, Sai Jiang, Jun Qian, Lei Song, Lei Zhang, Yujia Zhang, Yuhan Zhang, Yu Wang, Xinran Wang, Yi Shi, Youdou Zheng and Yun Li
Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors
Nature Scientific Reports volume 7, Article number: 7830 (2017)
DOI: https://doi.org/10.1038/s41598-017-08280-8


Yuhan Zhang, Zhongzhong Luo, Fengrui Hu, Haiyan Nan, Xiaoyong Wang, Zhenhua Ni, Jianbin Xu, Yi Shi and Xinran Wang
Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors
Nano Research volume 10, pages1336–1344(2017)
DOI: https://doi.org/10.1007/s12274-017-1442-5


Vladimir V. Korolkov, Matteo Baldoni, Kenji Watanabe, Takashi Taniguchi, Elena Besley and Peter H. Beton
Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays
Nature Chemistry volume 9, pages1191–1197(2017)
DOI: https://doi.org/10.1038/nchem.2824
https://ebesley.chem.nottingham.ac.uk/publications/pdf/nchem2017.pdf


Carlos A. Amo, Alma P. Perrino, Amir F. Payam, and Ricardo Garcia
Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution
ACS Nano 2017, 11, 9, 8650–8659
DOI: https://doi.org/10.1021/acsnano.7b04381
https://pubs.acs.org/doi/10.1021/acsnano.7b04381


Tobias Meier, Babak Eslami and Santiago D Solares
Multifrequency force microscopy using flexural and torsional modes by photothermal excitation in liquid: atomic resolution imaging of calcite
Nanotechnology 27 085702 ( 2016 )
DOI: https://doi.org/10.1088/0957-4484/27/8/085702


Ali K. Yetisen, Haider Butt, Tatsiana Mikulchyk, Rajib Ahmed, Yunuen Montelongo, Matjaž Humar, Nan Jiang, Suzanne Martin, Izabela Naydenova, and Seok Hyun Yun
Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Security
Advanced Optical Materials2016, 4, 1589–1600
DOI: https://doi.org/10.1002/adom.201600162
http://www.intelon.org/publications/YetisenAOM2016.pdf


Christian Dietz, Marcus Schulze, Agnieszka Voss, Christian Riesch and Robert W. Stark
Bimodal frequency-modulated atomic force microscopy with small cantilevers
Nanoscale, 2015, 7, 1849-1856
DOI: 10.1039/C4NR05907G


Rodolf Herfst, Bert Dekker, Gert Witvoet, Will Crowcombe, Dorus de Lange, and Hamed Sadeghian
A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points
Review of Scientific Instruments 86, 113703 (2015)
DOI: https://doi.org/10.1063/1.4935584

Schlesinger, K. Kuchuk, and U. Sivana
An ultra-low noise optical head for liquid environment atomic force microscopy
Review of Scientific Instruments 86, 083705 (2015)
DOI: https://doi.org/10.1063/1.4928497
https://www.researchgate.net/profile/Itai-Schlesinger/publication/281483090_An_ultra-low_noise_optical_head_for_liquid_environment_atomic_force_microscopy/links/5677a71f08ae125516ed968d/An-ultra-low-noise-optical-head-for-liquid-environment-atomic-force-microscopy.pdf


K.S.Karvinen, S.O.R.Moheimani
Modulated–demodulated control: Q control of an AFM microcantilever
Mechatronics, Volume 24, Issue 6, September 2014, Pages 661-671
DOI: https://doi.org/10.1016/j.mechatronics.2013.11.011
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.5371&rep=rep1&type=pdf


Matthäus Noga, Daniel Edinger, Ernst Wagner, Gerhard Winter and Ahmed Besheer
Characterization and compatibility of hydroxyethyl starch–polyethylenimine copolymers for DNA delivery
Journal of Biomaterials Science, Polymer Edition Volume 25, 2014 - Issue 9
DOI: https://doi.org/10.1080/09205063.2014.910152


Daowei He, Yuhan Zhang, Qisheng Wu, Rui Xu, Haiyan Nan, Junfang Liu, Jianjun Yao, Zilu Wang, Shijun Yuan, Yun Li, Yi Shi, Jinlan Wang, Zhenhua Ni, Lin He, Feng Miao, Fengqi Song, Hangxun Xu, K. Watanabe, T. Taniguchi, Jian-Bin Xu and Xinran Wang
Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors
Nature Communications volume 5, Article number: 5162 (2014)
DOI: https://doi.org/10.1038/ncomms6162


Donghyeok Lee, Hyunsoo Lee, N.S. Lee, K.B. Kim, YonghoSeo
High-speed atomic force microscopy with phase-detection
Current Applied Physics, Volume 12, Issue 3, May 2012, Pages 989-994
DOI: https://doi.org/10.1016/j.cap.2011.12.024
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.3553&rep=rep1&type=pdf


Raoul Enning, Dominik Ziegler, Adrian Nievergelt, Ralph Friedlos, Krithika Venkataramani, and Andreas Stemmer
A high frequency sensor for optical beam deflection atomic force microscopy
Review of Scientific Instruments 82, 043705 (2011)
DOI: https://doi.org/10.1063/1.3575322
http://biophys.w3.kanazawa-u.ac.jp/References/High-speed_AFM/high-speed-detector-RSI-2011.pdf


Takeshi Fukuma, Shunsuke Yoshioka and Hitoshi Asakawa
Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy
Review of Scientific Instruments 82, 073707 (2011)
DOI: https://doi.org/10.1063/1.3608447
https://www.researchgate.net/profile/Hitoshi-Asakawa/publication/51537431_Wideband_phase-locked_loop_circuit_with_real-time_phase_correction_for_frequency_modulation_atomic_force_microscopy/links/0deec5322f850b92c9000000/Wideband-phase-locked-loop-circuit-with-real-time-phase-correction-for-frequency-modulation-atomic-force-microscopy.pdf


Christoph Braunsmann and Tilman E Schäffer
High-speed atomic force microscopy for large scan sizes using small cantilevers
Nanotechnology 21 225705 ( 2010 )
DOI: https://doi.org/10.1088/0957-4484/21/22/225705
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.392.5685&rep=rep1&type=pdf


Yuji Mitani, Mamoru Kubo, Ken-ichiro Muramoto and Takeshi Fukuma
Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy
Review of Scientific Instruments 80, 083705 (2009)
DOI: https://doi.org/10.1063/1.3212670
https://pdfs.semanticscholar.org/ba7e/4a532e4e8cba783ba76180372e237c9db54c.pdf


Takeshi Fukuma and Suzanne P. Jarvis
Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions
Review of Scientific Instruments 77, 043701 (2006)
DOI: https://doi.org/10.1063/1.2188867
http://biophys.w3.kanazawa-u.ac.jp/References/Phase-AFM/Fukuma-Jarvis-RSI-2006.pdf

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: