The properties of a polymer change significantly depending on the structure of the polymer chain, particularly, with branched structures, depending on the number of branches and the length of the branch.* However, the long-chain branch (LCB) structure of polyethylene was unclear, due particularly to the complex polymer structure and the limitations of its analysis methods.
In their study “Direct Observation of Long-Chain Branches in a Low-Density Polyethylene” Ken-ichi Shinohara, Masahiro Yanagisawa and Yuu Makida measured the chain length of LCBs and the distance between branch points of LDPE by atomic force microscopy.*
Open Access: The article «Direct Observation of Long-Chain Branches in a Low-Density Polyethylene» by Ken-ichi Shinohara, Masahiro Yanagisawa and Yuu Makida is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Mucosal immunoglobulins comprise mainly secretory IgA antibodies (SIgAs), which are the major contributor to pathogen-specific immune responses in mucosal tissues. SIgAs exist as mainly dimers and tetramers and play critical roles in mucosal immune responses against influenza.*
Detailed characterization of these anti-viral SIgA is important for better understanding of the mechanisms underlying anti-viral immunity.* In their article “IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody” Saito S, Sano K, Suzuki T, Ainai A, Taga Y, Ueno T, et al. (2019) describe a means of generating a recombinant tetrameric monoclonal SIgA to enable exhaustive characterization of tetrameric SIgAs. The tetrameric monoclonal SIgA possessing variable regions of anti-influenza viruses broadly neutralizing antibody show that tetramerization of SIgA improves target breadth, but not the peak potency, of their anti-viral functions.* These results broaden the knowledge about the fundamental role of SIgA tetramerization in anti-viral humoral response at the human respiratory mucosa.*
The high speed atomic force microscopy ( HS-AFM ) experiments mentioned in the article were performed using a NanoWorld Ultra-Short Cantilever USC-F1.2-k0.15.
Open Access: The article « IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody » by Saito S, Sano K, Suzuki T, Ainai A, Taga Y, Ueno T, et al. (2019) is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
In their recent publication “High-speed AFM height spectroscopy reveals μs-dynamics of unlabeled biomolecules” in Nature Communications George R. Heath and Simon Sheuring develop and apply HS-AFM height spectroscopy (HS-AFM-HS, a technique inspired by fluorescence spectroscopy), a technique whereby the AFM tip is held at a fixed x–y position and the height fluctuations under the tip in z-direction with Angstrom spatial and 10µs temporal resolution are monitored.
They demonstrate “how this technique can be used to simultaneously measure surface concentrations, diffusion rates and oligomer sizes of highly mobile annexin-V molecules during membrane-binding and self-assembly at model membranes and derive its kinetic and energetic terms. Additionally, HS-AFM-HS at specific positions in the annexin lattice where the freedom of movement is restricted to rotation allowed determination of the interaction free energies of protein-protein contacts.”* The applicability of this technique is wide and is discussed at the end of the publication.
NanoWorld Ultra-Short Cantilevers (USC) for Fast-/High-Speed AFM ( USC-F1.2-k0.15 ) were used.
Congratulations to the authors to this publication which pushes the speed limits of AFM even further!
*George R. Heath & Simon Scheuring High-speed AFM height spectroscopy reveals μs-dynamics of unlabeled biomolecules Nature Communicationsvolume 9, Article number: 4983 (2018)
DOI: https://doi.org/10.1038/s41467-018-07512-3
Open Access The article “High-speed AFM height spectroscopy reveals μ s-dynamics of unlabeled biomolecules” by George R. Heath & Simon Scheuring is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.