Meet us at NanoKorea 2024

NanoWorld AG CEO Manfred Detterbeck is attending NANOKOREA 2024, the 22nd International #Nanotech Symposium & Exhibition on nanoscale science and technology , which will be held from July 3-5, 2024 at KINTEX (Korea International Exhibition Center), Goyang-si, Gyeonggi-do, South Korea.  http://www.nanokorea-sympo.or.kr/welcome.php

This year’s main theme is: Invisible Nano Realizes the Future

Will we meet you there too?

NanoWorld AG AFM probes CEO Manfred Detterbeck in front of the Kintex building with the Nano Korea 2024 logo sign showing a big smile and a thumbs-up for the success of this year's conference and exhibition.
Manfred Detterbeck is already looking forward to Nano Korea 2024. See you there!

Join us at the Panel Discussion on SPM Cantilevers at SPM Connect today

It’s the second day at #SPMConnect in Washington DC.

There is a Panel Discussion on #SPMCantilevers today at 3:30PM – National Harbor 5.

Our colleagues Manfred Detterbeck (NanoWorld CEO) and Dr. Oliver Krause (NanoWorld R&D team) will be there. Come and join us!

We are looking forward to your questions and an interesting discussion.

NanoWorld AFM probes CEO Manfred Detterbeck in front of a banner at SPM Connect 2024 in Washington DC pointing at the announcement of the panel discussion on SPM cantilevers
Manfred plans to be there. You too?
Dr. Oliver Krause from the NanoWorld AFM probes R&D team beside a banner at SPM Connect 2024 in Washington DC which announces of the panel discussion on SPM cantilevers
Oliver will be there too!

Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols

The products of the polyurethane (PU) industry such as foams, coatings and adhesives are numerous and can be found in many areas of everyday life. *

Polyols are an essential component in the production of polyurethane. Nowadays they mostly come from petroleum products. *

In view of potential risk factors such as the running out of fossil fuels, supply chain issues, environmental concerns and economic risks it is important to develop alternatives as substitutes and supplements to the existing petroleum derived polyols. *

Vegetable oils can be used to manufacture biobased polyols and various oils such as linseed oil, rapeseed oil, canola oil, grapeseed oil, corn oil, rice bran oil, palm oil, olive oil, castor oil and soybean oil have already been used to make polyols for different purposes.*

Most of the polyols derived from vegetable oils that are already commercially available are made from soybean and castor oil and are mainly used for rigid PU foam applications. *

So far biobased materials for flexible polyurethane foams (FPUFs) have not been studied as much as their rigid counterpart. This is because, due to their chemical composition, there are limits to how much biobased materials can be used in the flexible foam without having an undesired effect on the foam’s mechanical properties. *

Coconut oil is not often used to manufacture flexible foam because the coconut oil’s high level of saturation makes it less compatible with many common methods of creating polyols, as the widely used polyol-forming processes mostly rely on the unsaturation of vegetable oil for functionalization.

To make coconut monoglycerides (CMG) or other plant-based oils usable for polyol-forming processes they need to fulfil the same structural requirements as the fossil-based products. *

In the article “Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols “ Christine Joy M. Omisol, Blessy Joy M. Aguinid, Gerson Y. Abilay, Dan Michael Asequia, Tomas Ralph Tomon, Karyl Xyrra Sabulbero, Daisy Jane Erjeno, Carlo Kurt Osorio, Shashwa Usop, Roberto Malaluan, Gerard Dumancas, Eleazer P. Resurreccion, Alona Lubguban, Glenn Apostol, Henry Siy, Arnold C. Alguno, and Arnold Lubguban describe how they investigated the potential of coconut monoglycerides (CMG) as a polyol raw material specifically for flexible polyurethane foam (FPUF) applications.*

The authors synthesized high-molecular-weight polyester polyols from coconut monoglycerides (CMG), a coproduct of fatty acid production from coconut oil, via polycondensation at different mass ratios of CMG with 1:5 glycerol:phthalic anhydride.*

The resulting CMG-based polyols were shown to work well in making flexible foam. *

Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) were used for the foam characterization. *

The modification of the foam formulation increased the monodentate and bidentate urea groups, shown using Fourier transform infrared (FTIR) spectroscopy, that promoted microphase separation in the foam matrix, confirmed using atomic force microscopy (AFM) and differential scanning calorimetry (DSC). *

Atomic force microscopy (AFM) was used to evaluate the hard–soft domains phase separation of the foam. *

The atomic force microscope was operated at a scan rate of 1.0 Hz in non-contact mode using NanoWorld Pointprobe® NCHR Silicon AFM probes for standard tapping mode applications. (typical resonance frequency 320 kHz, typical force constant 42 N/m). *

It could be shown that density of the CMGPOL-modified polyurethane foams (CPFs) decreased, while a significant improvement in their tensile and compressive properties was observed. *

The investigations by Christine Joy M. Omisol et al. resulted in a new sustainable polyol raw material that can be used to modify petroleum-based foam and produce flexible foams with varying properties that can be tailored to meet specific requirements. *

Figure 11 from Christine Joy M. Omisol et al (2024) “Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols”:Atomic force microscopy (AFM) phase images of CMGPOL-modified polyurethane foams (CPF) and control foam measured with a size scan of 3 μm × 3 μm showing soft and hard regions represented by red and yellow colors, respectively. The foam samples in Figure 11 that exhibited a relatively high degree of microphase separation compared with other samples are CPF-8 and CPF-20. These foams appear to have relatively lighter areas of urea-rich regions separated more prominently from the darker, polyol-rich regions. In contrast, the control foam and CPF-16 show more dispersed hard and soft domains. CPF-24 and CPF-12 are at the middle of the scale, displaying light regions but with more dispersion than CPF-8 and CPF-20. These observations from the phase images of the foam samples are in agreement with the monodentate and bidentate urea contents of the samples, wherein the foams that exhibit greater H-bonding also manifest a higher degree of microphase separation. The same results were obtained by Baghban et al. NanoWorld Pointprobe® NCHR standard tapping mode/non-contact mode silicon AFM probes were used for the foam characterizations with atomic force microscopy.
Figure 11 from Christine Joy M. Omisol et al (2024) “Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols”:
Atomic force microscopy (AFM) phase images of CMGPOL-modified polyurethane foams (CPF) and control foam measured with a size scan of 3 μm × 3 μm showing soft and hard regions represented by red and yellow colors, respectively.

*Christine Joy M. Omisol, Blessy Joy M. Aguinid, Gerson Y. Abilay, Dan Michael Asequia, Tomas Ralph Tomon, Karyl Xyrra Sabulbero, Daisy Jane Erjeno, Carlo Kurt Osorio, Shashwa Usop, Roberto Malaluan, Gerard Dumancas, Eleazer P. Resurreccion, Alona Lubguban, Glenn Apostol, Henry Siy, Arnold C. Alguno, and Arnold Lubguban
Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols
ACS Omega 2024, 9, 4, 4497–4512
DOI: https://doi.org/10.1021/acsomega.3c07312

The article “Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols” by Christine Joy M. Omisol, Blessy Joy M. Aguinid, Gerson Y. Abilay, Dan Michael Asequia, Tomas Ralph Tomon, Karyl Xyrra Sabulbero, Daisy Jane Erjeno, Carlo Kurt Osorio, Shashwa Usop, Roberto Malaluan, Gerard Dumancas, Eleazer P. Resurreccion, Alona Lubguban, Glenn Apostol, Henry Siy, Arnold C. Alguno and Arnold Lubguban is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.