Courtesy of Prof. Noriyuki Kodera, nanoLSI, Kanazawa University, Japan we could upload two new images and a very nice High Speed Atomic Force Microscopy (HS-AFM) video of Actin filaments on Mica with APTES to the image gallery and the video gallery on https://www.highspeedscanning.com/.
NanoWorld USC-F1.2-k0.15 Ultra-Short AFM cantilevers [C = 0.15 N/m; fo = 1200 kHz] were used for the high speed imaging.
The HighSpeedScanning webpage is dedicated to presenting information about ultra high frequency AFM probe solutions for High Speed AFM ranging from already commercialized AFM probes such as the ArrowTM UHF and NanoWorld Ultra-Short Cantilever (USC) series to AFM probes that are still under development.
Additionally to the High-Speed AFM images and videos researchers worldwide kindly have provided us with so that we can share them with the whole High Speed AFM community you will also find a list of links and references dedicated to High-Speed AFM on https://www.highspeedscanning.com/high-speed-scanning.html
We are aware that these lists are far from complete and we are constantly working on keepting them up to date. If your research institute or company is working with High Speed AFM (HS-AFM) using our AFM probes or if you have published articles with images that were achieved with our High Speed AFM probes annd you find that are missing from our list then please let us know via email: info@highspeedscanning.com if you would like us to add them to the list of references .
Membrane proteins (MPs) reside in the plasma membrane and perform various biological processes including ion transport, substrate transport, and signal transduction.*
Function-related conformational changes in membrane proteins occur in times scales ranging from nanoseconds to seconds.*
Obtaining time-resolved dynamic information of MPs in their membrane environment is still a major challenge.*
Although High Speed Atomic Force Microscopy (HS-AFM) images label-free samples such as DNA, soluble proteins, MPs, and intrinsically disordered proteins at ~1n~m lateral, ~0.1 nm vertical and ~100 ms temporal solution in aqueous environment and at ambient temperature and pressure, its temporal resolution is too slow to characterize many dynamic biological processes.*
In order to overcome this limitation Raghavendar Reddy Sanganna Gari, Joel José Montalvo-Acosta, George R. Heath, Yining Jiang, Xiaolong Gao, Crina M. Nimigean, Christophe Chipot and Simon Scheuring in their article Correlation of membrane protein conformational and functional dynamics use High Speed Atomic Force Microscopy Height Spectroscopy ( HS-AFM-HS) to characterize the microsecond timescale conformational changes of an integral-MP model system, i.e., the outer membrane protein G (OmpG) in a membrane environment.*
The positioning of the AFM tip is guided by HS-AFM imaging immediately before HS-AFM-HS-operation.*
NanoWorld Ultra-Short Cantilevers (USC) of the USC-F1.2-k0.15 type were used for the HS-AFM and HS-AFM-HS presented in the article.*
*Raghavendar Reddy Sanganna Gari, Joel José Montalvo-Acosta, George R. Heath, Yining Jiang, Xiaolong Gao, Crina M. Nimigean, Christophe Chipot and Simon Scheuring Correlation of membrane protein conformational and functional dynamics Nature Communications volume 12, Article number: 4363 (2021) DOI: https://doi.org/10.1038/s41467-021-24660-1
Open Access : The article “Correlation of membrane protein conformational and functional dynamics” by Raghavendar Reddy Sanganna Gari, Joel José Montalvo-Acosta, George R. Heath, Yining Jiang, Xiaolong Gao, Crina M. Nimigean, Christophe Chipot and Simon Scheuring is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
When they are in put in contact with carbonate minerals dangerous environmental pollutants such as Pb2+ and Cd2+ are taken up by the solid phase assemblage and can be removed from aqueous solutions.*
As carbonates can be found almost everywhere and are easily exploitable this makes them interesting materials for environmental remediation.*
However, magnesite ( MGS ) is well-known for the slow dissolution and growth kinetics at room temperature conditions in the so-called dolomite problem.*
In their article “Pb2+Uptake by Magnesite: The Competition between Thermodynamic Driving Force and Reaction Kinetics” Fulvio Di Lorenzo, Tobias Arnold and Sergey V. Churakov use in situ atomic force microscopy (AFM) to investigate the growth of {10.4} magnesite surfaces in the absence and in the presence of Pb2+ as well as the effect of solution ageing.*
In their study the authors attempt to answer the question if and under which circumstances magnesium carbonate could be used in removing Pb from wastewater.*
The experimental results presented in above mentioned article have the object to discuss and evaluate the theoretical possibilities and the practical limitations that must be taken into account for the development of environmental remediation technologies based on magnesite.*
The experiments conducted in this study by Fulvio Di Lorenzo et al. demonstrate that, although the thermodynamic conditions are encouraging, the transformation reaction between magnesite and cerrusite makes it improbably that it will play a crucial role in the development of remediation processes for PbII pollution.*
The authors of the study conclude that, although the thermodynamic conditions are encouraging, an environmental remediation process based on MGS as the substrate for a solvent-mediated transformation reaction is unlikely to play a crucial part in industrial applications due to the slow kinetics of MGS dissolution. However, the sluggish kinetics of MGS precipitation is favourable for Pb entrapment by the precipitation of carbonate from Mg2+ and Pb2+-bearing solutions, leading to a strong PbII enrichment in the solid phase even in far-from-equilibirum conditions.*
The in situ flow-through Atomic Force Microscopy was performed using Arrow-UHFAuD AFM probes in tapping mode.
*Fulvio Di Lorenzo, Tobias Arnold, and Sergey V. Churakov Pb2+ Uptake by Magnesite: The Competition between Thermodynamic Driving Force and Reaction Kinetics Minerals 2021, 11(4), 415 DOI: https://doi.org/10.3390/min11040415
Open Access : The article “Pb2+ Uptake by Magnesite: The Competition between Thermodynamic Driving Force and Reaction Kinetics” by Fulvio Di Lorenzo, Tobias Arnold, and Sergey V. Churakov is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.