Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division

Bacterial cell division is a complex process requiring the coordination of multiple components to allow the appropriate spatial and temporal control of septum formation and cell scission. *

Peptidoglycan (PG) is the major structural component of the septum, and recent studies by Katarzyna Wacnik et al., in the human pathogen Staphylococcus aureus have revealed a complex, multistage PG architecture that develops during septation. *

Penicillin-binding proteins (PBPs) are essential for the final steps of PG biosynthesis; their transpeptidase activity links the peptide side chains of nascent glycan strands. PBP1 is required for cell division in S. aureus. *

In the article “Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division” Katarzyna Wacnik, Vincenzo A. Rao, Xinyue Chen, Lucia Lafage, Manuel Pazos, Simon Booth, Waldemar Vollmer, Jamie K. Hobbs, Richard J. Lewis and Simon J. Foster demonstrate that it has multiple essential functions associated with its enzymatic activity and as a regulator of division. *

Loss of PBP1, or just its C-terminal PASTA domains, results in cessation of division at the point of septal plate formation. The PASTA domains can bind PG and thereby potentially coordinate the cell division process. The transpeptidase activity of PBP1 is also essential, but its loss leads to a strikingly different phenotype of thickened and aberrant septa, which is phenocopied by the morphological effects of adding the PBP1-specific β-lactam, meropenem. Together, these results lead to a model for septal PG synthesis where PBP1 enzyme activity is required for the characteristic architecture of the septum and PBP1 protein molecules enable the formation of the septal plate. *

Bacterial cell wall peptidoglycan is essential, and its synthesis is the target of clinically important antibiotics such as β-lactams. β-lactams target penicillin-binding proteins (PBPs) that assemble new peptidoglycan from its building blocks. *

The human pathogen Staphylococcus aureus only has two essential PBPs that can carry out all the functions necessary for growth and division. *

In the absence of the confounding antibiotic resistance-associated PBP PBP2A, the PBP1 transpeptidase activity is required for cell division, and in the article “Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division”, Katarzyna Wacnik et al. state that they have found that it has several essential functions, both as an enzyme and as a coordinator by binding to cell division proteins and to its peptidoglycan product, via its PASTA domains. *

This has led to a new model for cell division with PBP1 responsible for the synthesis of the characteristic architectural features of the septum. *

NanoWorld Ultra-Short Cantilevers for High-Speed AFM of the USC-F0.3-k0.3 AFM probe type (nominal spring constant of 0.3 N/m and resonant frequency (in liquid) of ~150 kHz (300 kHz in air) were used for the Atomic Force Microscopy imaging.

Supplemental Material from Katarzyna Wacnik et al 2022 “Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division” FIG S5: Gallery of AFM images of S. aureus Δpbp1, pbp1ΔPASTA, and pbp1*. (A) Diagram of the section through of the cell with progressing septum (top) and AFM topographic images (bottom) of unfinished (i) and closed (ii) septa, parallel to the plane of the image, in SH1000 WT. Sacculi (images to the left, scale bars = 500 nm, data scales [z]: 200 [top] and 250 nm [bottom]) and higher-magnification scans (images to the right, scale bars = 50 nm, data scales [z]: 80 [top] and 40 nm [bottom]) of the boxed areas from the images to the left. (B) AFM topographic images of unfinished septa, parallel to the plane of the image, in Δpbp1 (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 500, 120, and 150 nm), pbp1ΔPASTA (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 693, 80, and 100 nm), and pbp1* (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 500, 80, and 25 nm) grown in the absence of inducer for 2 h. Images to the left are sacculi, while images in the center (1) and to the right (2) are higher-magnification scans of the boxed areas of the images on the left. (C) AFM topographic images (right) of the external nascent ring architecture in SH1000 WT (wt; from top to bottom, scale bars = 500 and 50 nm; data scales [z], 100 and 20 nm) and mutants Δpbp1 (top to bottom, scale bars = 500 and 50 nm; data scales [z], 400 and 60 nm) and pbp1ΔPASTA (from top to bottom, scale bars = 500 and 50 nm; data scales [z], 350 and 100 nm) grown in the absence of inducer for 2 h. The top images are the external surface of sacculi, while the bottom images are higher-magnification scans of the boxed areas of the top images. The arrows indicate piecrusts of the next division plane, which dissects the previous division septum. Arrowheads indicate abnormal features, holes, in the PG ring architecture. On the left is an interpretive diagram of a section through the cell wall (i) and the corresponding external surface (ii) as viewed by AFM. The mature cell wall of a newly separated daughter cell is shown in blue, which has both internally and externally mesh-structured PG. The newly exposed septum has an external ring-structured PG (green) and a mesh-like cytoplasmic facing PG (yellow). Data are representative of two independent experiments. NanoWorld Ultra-Short Cantilevers for High-Speed Atomic Force Microscopy of the USC-F0.3-k0.3 AFM probe type were used.
Supplemental Material from Katarzyna Wacnik et al 2022 “Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division” FIG S5: Gallery of AFM images of S. aureus Δpbp1, pbp1ΔPASTA, and pbp1*. (A) Diagram of the section through of the cell with progressing septum (top) and AFM topographic images (bottom) of unfinished (i) and closed (ii) septa, parallel to the plane of the image, in SH1000 WT. Sacculi (images to the left, scale bars = 500 nm, data scales [z]: 200 [top] and 250 nm [bottom]) and higher-magnification scans (images to the right, scale bars = 50 nm, data scales [z]: 80 [top] and 40 nm [bottom]) of the boxed areas from the images to the left. (B) AFM topographic images of unfinished septa, parallel to the plane of the image, in Δpbp1 (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 500, 120, and 150 nm), pbp1ΔPASTA (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 693, 80, and 100 nm), and pbp1* (from left to right, scale bars = 500, 50, and 50 nm; data scales [z] 500, 80, and 25 nm) grown in the absence of inducer for 2 h. Images to the left are sacculi, while images in the center (1) and to the right (2) are higher-magnification scans of the boxed areas of the images on the left. (C) AFM topographic images (right) of the external nascent ring architecture in SH1000 WT (wt; from top to bottom, scale bars = 500 and 50 nm; data scales [z], 100 and 20 nm) and mutants Δpbp1 (top to bottom, scale bars = 500 and 50 nm; data scales [z], 400 and 60 nm) and pbp1ΔPASTA (from top to bottom, scale bars = 500 and 50 nm; data scales [z], 350 and 100 nm) grown in the absence of inducer for 2 h. The top images are the external surface of sacculi, while the bottom images are higher-magnification scans of the boxed areas of the top images. The arrows indicate piecrusts of the next division plane, which dissects the previous division septum. Arrowheads indicate abnormal features, holes, in the PG ring architecture. On the left is an interpretive diagram of a section through the cell wall (i) and the corresponding external surface (ii) as viewed by AFM. The mature cell wall of a newly separated daughter cell is shown in blue, which has both internally and externally mesh-structured PG. The newly exposed septum has an external ring-structured PG (green) and a mesh-like cytoplasmic facing PG (yellow). Data are representative of two independent experiments.
*Katarzyna Wacnik, Vincenzo A. Rao, Xinyue Chen, Lucia Lafage, Manuel Pazos, Simon Booth, Waldemar Vollmer, Jamie K. Hobbs, Richard J. Lewis and Simon J. Foster
Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division
American Society for Microbiology Journals, (2022) mBio, Vol. 13, No. 4
DOI: https://doi.org/10.1128/mbio.00669-22

The article “Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division” by Katarzyna Wacnik, Vincenzo A. Rao, Xinyue Chen, Lucia Lafage, Manuel Pazos, Simon Booth, Waldemar Vollmer, Jamie K. Hobbs, Richard J. Lewis and Simon J. Foster is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Carbon nanotube porin diffusion in mixed composition supported lipid bilayers

Lipid membranes play a key role in living systems by providing a structural barrier that separates cellular compartments. Bilayer fluidity in the lateral plane is a key property of lipid membranes, that allows the membrane to have sufficient flexibility to accommodate dynamic stresses, shape changes and rearrangements accompanying the cellular lifecycle.*

In the article “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy describe how they used high-speed atomic force microscopy (HS-AFM) and all-atom molecular dynamics (MD) simulations to study the behavior of CNTPs in a mixed lipid membrane consisting of DOPC lipid with a variable percentage of DMPC lipid added to it. HS-AFM data reveal that the CNTPs undergo diffusive motion in the bilayer plane.*

Motion trajectories extracted from the HS-AFM movies indicate that CNTPs exhibit diffusion coefficient values broadly similar to values reported for membrane proteins in supported lipid bilayers. The data also indicate that increasing the percentage of DMPC leads to a marked slowing of CNTP diffusion. MD simulations reveal a CNTP-lipid assembly that diffuses in the membrane and show trends that are consistent with the experimental observations. *

The above-mentioned study confirms that CNTPs mimic the major features of the diffusive movement of biological pores in lipid membranes and shows how the increase in bilayer viscosity leads to a corresponding slowdown in protein motion. It should be possible to extend this approach to studies of other membrane protein dynamics in supported lipid bilayers. The authors note that those studies, however, will need to be mindful of the challenge of unambiguous visualization of the membrane components, especially in systems that incorporate smaller proteins, such as antimicrobial peptides. Another challenge that could complicate these studies would be microscopic phase separation of the lipid matrix that could lead to complicated pore dynamics in the membrane. *

NanoWorld Ultra-Short AFM cantilevers with high-density carbon/diamond-like carbon (HDC/DLC) AFM tips of the USC-F1.2-k0.15 type were used for the high-speed atomic force microscopy described in the article. *

Figure 2 from “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan et al.:

CNTP motion in supported lipid bilayers. (a) Representative frames (with times in seconds indicated on each image) from an HS-AFM movie showing a CNTP diffusing in a supported lipid bilayer with 80:20 DOPC-DMPC ratio (see also Supplementary Movie 2). (b) A representative trajectory for CNTP diffusion in the bilayer. The time step between each datapoint is 0.5 s. NanoWorld Ultra-Short AFM Cantilvers USC-F1.2-k0.15 were used for the HS-AFM imaging
Figure 2 a and b from “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan et al.:

CNTP motion in supported lipid bilayers. (a) Representative frames (with times in seconds indicated on each image) from an HS-AFM movie showing a CNTP diffusing in a supported lipid bilayer with 80:20 DOPC-DMPC ratio (see also Supplementary Movie 2). (b) A representative trajectory for CNTP diffusion in the bilayer. The time step between each datapoint is 0.5 s.
Please refer to the full article cited below for the full figure.

*Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy
Carbon nanotube porin diffusion in mixed composition supported lipid bilayers
Nature Scientific Reports volume 10, Article number: 11908 (2020)
DOI: https://doi.org/10.1038/s41598-020-68059-2

Please follow this external link to read the full article: https://rdcu.be/b69wj

Open Access : The article “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy

Stem cell apoptosis exists widely in embryonic development, tissue regeneration, repair, aging and pathophysiology of disease. The molecular mechanism of stem cell apoptosis has been extensively investigated.*

However, alterations in biomechanics and nanomorphology have rarely been studied.*

In the research article “ Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy “ Xuelian Su, Haijing Zhou, Guangjie Bao, Jizeng Wang, Lin Liu, Qian Zheng, Manli Guo and Jinting Zhang establish an apoptosis model for bone marrow mesenchymal stem cells (BMSCs) and investigated in detail the reconstruction of the mechanical properties and nanomorphology of the cells.*

Atomic force microscopy (AFM), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), flow cytometry and Cell Counting Kit-8 analysis were applied to assess the cellular elasticity modulus, geometry, nanomorphology, cell surface ultrastructure, biological viability and early apoptotic signals (phosphatidylserine,PS).*

The results indicated that the cellular elastic modulus and volume significantly decreased, whereas the cell surface roughness obviously increased during the first 3 h of cytochalasin B (CB) treatment. Moreover, these alterations preceded the exposure of biological apoptotic signal PS.*

These findings suggested that cellular mechanical damage is connected with the apoptosis of BMSCs, and the alterations in mechanics and nanomorphology may be a sensitive index to detect alterations in cell viability during apoptosis. The results contribute to further understanding of apoptosis from the perspective of cell mechanics.*

NanoWorld PNP Silicon Nitride AFM probes of the PNP-DB type were used for the single-cell imaging with Atomic Force Microscopy and nanoindentation experiments described in this research article.*

Figure 4 from “Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy” by Xuelian Su et al.:
Surface topography of BMSCs captured by AFM at different times. Columns A–D indicated the height-measurement images, vertical deflection images, three-dimensional images and cross-sectional images, respectively. The bright area was the elevated part of the cell, where the nucleus was located(A,C). The untreated cells adhered well, and their surface was smooth. The texture of the F-actin bundles is clearly visible (B, 0 h). The surface of treated cells became increasingly rough, the periphery of the cells became irregular and the area of cell extension gradually decreased (A and B, 1 h, 3 h, respectively).
Figure 4 from “Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy” by Xuelian Su et al.:
Surface topography of BMSCs captured by AFM at different times. Columns A–D indicated the height-measurement images, vertical deflection images, three-dimensional images and cross-sectional images, respectively. The bright area was the elevated part of the cell, where the nucleus was located(A,C). The untreated cells adhered well, and their surface was smooth. The texture of the F-actin bundles is clearly visible (B, 0 h). The surface of treated cells became increasingly rough, the periphery of the cells became irregular and the area of cell extension gradually decreased (A and B, 1 h, 3 h, respectively).

*Xuelian Su, Haijing Zhou, Guangjie Bao, Jizeng Wang, Lin Liu, Qian Zheng, Manli Guo and Jinting Zhang
Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy
Biology Open (2020) 9, bio048108.
DOI: 10.1242/bio.048108

Please follow this external link to read the full article: https://bio.biologists.org/content/biolopen/9/3/bio048108.full.pdf

Open Access The article “ Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy “ by Xuelian Su, Haijing Zhou, Guangjie Bao, Jizeng Wang, Lin Liu, Qian Zheng, Manli Guo and Jinting Zhang is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.