C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications

In the search for lead-free, Si-microfabrication-compatible piezoelectric materials, thin films of scandium-doped aluminum nitride (Al,Sc)N are of great interest for use in actuators, energy harvesting, and micro-electromechanical-systems (MEMS).*

While the piezoelectric response of AlN increases upon doping with Sc, difficulties are encountered during film preparation because, as bulk solids with completely different structures and large differences in cation radii, ScN (rock salt, cubic) and AlN (wurtzite, hexagonal) are immiscible. *

Consequently, (Al,Sc)N is inherently thermodynamically unstable and prone to phase segregation. Film preparation is further complicated by the technological requirement for polar [001] or [00 1̲] out-of-plane texture, which is achieved using a seeding layer.*

In the article “C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications” Asaf Cohen, Hagai Cohen, Sidney R. Cohen, Sergey Khodorov, Yishay Feldman, Anna Kossoy, Ifat Kaplan-Ashiri, Anatoly Frenkel, Ellen Wachtel, Igor Lubomirsky and David Ehre propose a protocol for successfully depositing [001] textured, 2–3 µm thick films of Al0.75Sc0.25N.*

The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. *

An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field. *

SEM, AFM, EDS, XRD and XPS techniques were used for the film characterization. For the nanoscale topography maps with atomic force microscopy (AFM) NanoWorld Pyrex-Nitride series PNP-TRS silicon nitride AFM probes were used in peak-force tapping mode. *

Figure 3 from Asaf Cohen et al. “C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications”: AFM images of (a) a (100) silicon wafer following cleaning procedures as described in the Materials and Methods section; (b) 50 nm-thick Ti film deposited on the wafer at 300 K; (c) the same film following exposure to N2 plasma at 673 K for 30 min. For the nanoscale topography maps with atomic force microscopy (AFM) NanoWorld Pyrex-Nitride PNP-TRS AFM probes were used in peak-force tapping mode1. *
Figure 3 from Asaf Cohen et al. “C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications”: AFM images of (a) a (100) silicon wafer following cleaning procedures as described in the Materials and Methods section; (b) 50 nm-thick Ti film deposited on the wafer at 300 K; (c) the same film following exposure to N2 plasma at 673 K for 30 min.

*Asaf Cohen, Hagai Cohen, Sidney R. Cohen, Sergey Khodorov, Yishay Feldman, Anna Kossoy, Ifat Kaplan-Ashiri, Anatoly Frenkel, Ellen Wachtel, Igor Lubomirsky and David Ehre
C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications
Sensors 2022, 22, 7041
DOI: https://doi.org/10.3390/s22187041

The article “C-Axis Textured, 2–3 μm Thick Al0.75Sc0.25N Films Grown on Chemically Formed TiN/Ti Seeding Layers for MEMS Applications” by Asaf Cohen, Hagai Cohen, Sidney R. Cohen, Sergey Khodorov, Yishay Feldman, Anna Kossoy, Ifat Kaplan-Ashiri, Anatoly Frenkel, Ellen Wachtel, Igor Lubomirsky and David Ehre is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

1Peak Force Tapping® is a registered trademark of Bruker Corporation.

Meet us at Arablab 2023

NanoWorld AG CEO Manfred Detterbeck is @arablab which is currently being held from 19 – 21 September 2023 at Dubai World Trade Centre.  Will we meet you there too?

Opening hours:

19 – 20 Sept: 10.00 – 18.00

21 Sept: 10.00 – 17.00

NanoWorld AFM probes CEO Manfred Detterbeck at Arablab 2023 in Dubai this week. Don't hesitate to catch up with him on the news on AFM probes when you meet him.
NanoWorld CEO Manfred Detterbeck at Arablab 2023

Cell surface fluctuations regulate early embryonic lineage sorting

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive.*

In the article “Cell surface fluctuations regulate early embryonic lineage sorting” Ayaka Yanagida, Elena Corujo-Simon, Christopher K. Revell, Preeti Sahu, Giuliano G. Stirparo, Irene M. Aspalter, Alex K. Winkel, Ruby Peters, Henry De Belly, Davide A.D. Cassani, Sarra Achouri     Raphael Blumenfeld, Kristian Franze, Edouard Hannezo, Ewa K. Paluch, Jennifer Nichols and Kevin J. Chalut investigate the mechanical basis of EPI and PrE sorting. *

The authors find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting.*

These differential surface fluctuations systematically correlate with differential cellular fluidity, which Ayaka Yanagida et al. propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, A. Yanagida et al. identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.*

The surface tension of cells was measured using an Atomic Force Microscopy (AFM) based technique with a commercially available stand-alone platform for cell adhesion and cytomechanics studies mounted on an inverted confocal microscope.*

pEPI (epiblast , EPI, founder of the fetus) and pPrE (primitive endoderm, founder of the yolk sac ) tension measurements were performed using NanoWorld ARROW-TL1Au tipless silicon AFM cantilevers (nominal spring constant of 0.03 N/m).*
Sensitivity was calibrated by acquiring a force curve on a glass coverslip. Spring constant was calibrated by the thermal noise fluctuation method. Z-length parameter and setpoint force were set at 30 μm and 10 nN, respectively. Constant height mode was selected. The measurement was carried on by lowering the tipless AFM cantilever onto an empty area next to a target cell. Once the cantilever retracted (by roughly 30 μm), it was positioned above the target cell and run a compression for 200 seconds. During the constant height compression, the force acting on the AFM cantilever was recorded. After initial force relaxation, the resulting force value was used to extract surface tension.*

ES cells tension measurements were performed using the same commercial platform for cell adhesion and cytomechanics studies and a DSD2 Differential Spinning Disk both mounted on an inverted microscope.*

NanoWorld tipless silicon AFM cantilevers of the ARROW-TL1 type were chosen (nominal spring constant of 0.03 N/m). Sensitivity was calibrated by acquiring a force curve on glass. Spring constant was calibrated by the thermal noise fluctuation method. Z-length parameter and setpoint force were set at 80 μm and 4 nN, respectively. Constant height mode was selected. The measurement was carried on by lowering the tipless AFM cantilever onto an empty area next to a target cell. Once the AFM cantilever retracted (by roughly 80 μm), it was positioned above the target cell and a compression was run for 50 seconds. During the constant height compression, the force acting on the AFM cantilever was recorded. After initial force relaxation, the resulting force value was used to extract surface tension. A confocal stack was acquired using a ×40/1.1 NA water immersion objective.*

Figure 4 from Ayaka Yanagida et al. “Cell surface fluctuations regulate early embryonic lineage sorting”:Differences in ezrin-mediated surface fluctuations regulate cell sorting (A) Representative images of constitutively active Ezrin-IRES-mCherry (CA-EZR) ES cells, showing a high degree of pERM variability in the low mCherry-expressing ES cells. Surface fluctuations of single CA-EZR cells without Dox and WT H2B-BFP, and CA-EZR ES cells with or without Dox in 2i+LIF. L, M, and H indicate low, medium, and high expression of mCherry as assessed by the 3-quantiles of expression in the mCherry-expressing cells. Surface fluctuations were normalized by the mean of the Dox− surface fluctuations in each of the experiments or the mean of the WT H2B-BFP surface fluctuations. p values were calculated using one-way ANOVA, with the p values above each group representing the outcome of pairwise comparison with Dox−, and the p value above all values in CA-EZR Dox+ condition representing the comparison of all groups. (B) The surface tension of dissociated Dox-treated CA-EZR ES cells measured using the AFM technique presented in Chugh et al., 2017 is plotted against the intensity of mCherry to show that there is no correlation between CA-EZR expression and surface tension. On the right is the surface tension of dissociated WT H2B-BFP ES cells and Dox-treated CA-EZR ES cells. p value was calculated by two-way ANOVA using cell type and experimental replicate as variables. (C) θ of the homotypic doublets that can be formed from CA-EZR ES cells with or without Dox. (D) Representative images of CA-EZR ES cells and WT H2B-BFP ES cells aggregated with or without Dox. The line drawn through the center of the aggregates represents the line over which we found an intensity profile in (E). (E) Representative comparison of BFP and mCherry line scan signals in the CA-EZR and H2B-BFP ES cells aggregates with or without Dox, using the line across the images in (D). (F) Schematic showing how the radial average (dipole moment) R is calculated, along with model examples of R for distributions shown. (G) R of aggregates of CA-EZR and H2B-BFP ES cells. pEPI (epiblast , EPI, founder of the fetus) and pPrE (primitive endoderm, founder of the yolk sac ) tension measurements were performed using NanoWorld ARROW-TL1Au tipless silicon AFM cantilevers. ES cells tension measurements were performed using NanoWorld tipless silicon AFM cantilevers of the ARROW-TL1 type were chosen (nominal spring constant of 0.03 N/m).
Figure 4 from Ayaka Yanagida et al. “Cell surface fluctuations regulate early embryonic lineage sorting”:
Differences in ezrin-mediated surface fluctuations regulate cell sorting
(A) Representative images of constitutively active Ezrin-IRES-mCherry (CA-EZR) ES cells, showing a high degree of pERM variability in the low mCherry-expressing ES cells. Surface fluctuations of single CA-EZR cells without Dox and WT H2B-BFP, and CA-EZR ES cells with or without Dox in 2i+LIF. L, M, and H indicate low, medium, and high expression of mCherry as assessed by the 3-quantiles of expression in the mCherry-expressing cells. Surface fluctuations were normalized by the mean of the Dox− surface fluctuations in each of the experiments or the mean of the WT H2B-BFP surface fluctuations. p values were calculated using one-way ANOVA, with the p values above each group representing the outcome of pairwise comparison with Dox−, and the p value above all values in CA-EZR Dox+ condition representing the comparison of all groups.
(B) The surface tension of dissociated Dox-treated CA-EZR ES cells measured using the AFM technique presented in Chugh et al., 2017
is plotted against the intensity of mCherry to show that there is no correlation between CA-EZR expression and surface tension. On the right is the surface tension of dissociated WT H2B-BFP ES cells and Dox-treated CA-EZR ES cells. p value was calculated by two-way ANOVA using cell type and experimental replicate as variables.
(C) θ of the homotypic doublets that can be formed from CA-EZR ES cells with or without Dox.
(D) Representative images of CA-EZR ES cells and WT H2B-BFP ES cells aggregated with or without Dox. The line drawn through the center of the aggregates represents the line over which we found an intensity profile in (E).
(E) Representative comparison of BFP and mCherry line scan signals in the CA-EZR and H2B-BFP ES cells aggregates with or without Dox, using the line across the images in (D).
(F) Schematic showing how the radial average (dipole moment) R is calculated, along with model examples of R for distributions shown.
(G) R of aggregates of CA-EZR and H2B-BFP ES cells.

*Ayaka Yanagida, Elena Corujo-Simon, Christopher K. Revell, Preeti Sahu, Giuliano G. Stirparo, Irene M. Aspalter, Alex K. Winkel, Ruby Peters, Henry De Belly, Davide A.D. Cassani, Sarra Achouri     Raphael Blumenfeld, Kristian Franze, Edouard Hannezo, Ewa K. Paluch, Jennifer Nichols and Kevin J. Chalut
Cell surface fluctuations regulate early embryonic lineage sorting
Cell, Volume 185, Issue 5, 3 March 2022, Pages 777-793.e20
DOI: https://doi.org/10.1016/j.cell.2022.01.022

The article “Cell surface fluctuations regulate early embryonic lineage sorting” by Ayaka Yanagida, Elena Corujo-Simon, Christopher K. Revell, Preeti Sahu, Giuliano G. Stirparo, Irene M. Aspalter, Alex K. Winkel, Ruby Peters, Henry De Belly, Davide A.D. Cassani, Sarra Achouri     Raphael Blumenfeld, Kristian Franze, Edouard Hannezo, Ewa K. Paluch, Jennifer Nichols and Kevin J. Chalut is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.