Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy

The nature of the electrolyte cation is known to have a significant impact on electrochemical reduction of CO2 at catalyst|electrolyte interfaces. An understanding of the underlying mechanism responsible for catalytic enhancement as the alkali metal cation group is descended is key to guide catalyst development. *

In the article “Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy” Liam C. Banerji, Hansaem Jang, Adrian M. Gardner and Alexander J. Cowan use in situ vibrational sum frequency generation (VSFG) spectroscopy to monitor changes in the binding modes of the CO intermediate at the electrochemical interface of a polycrystalline Cu electrode during CO2 reduction as the electrolyte cation is varied.  *

Three alkali metal cations have been chosen for analysis: K+, which is the most commonly used electrolyte cation for eCO2R, Cs+, which has been shown to give the greatest enhancement for C2+ products, and Na+, which shows poorer eCO2R performance than K+ whilst maintaining appreciable levels of C-based products. The ability of VSFG to study catalyst|electrolyte interfaces without the need for modifications, as required in the spectroelectrochemical studies mentioned in the article, which can fundamentally alter the electrodes activity, makes it an important tool to assess the mechanisms occurring on the pc-Cu electrodes routinely employed for eCO2R. *

A CObridge mode is observed only when using Cs+, a cation that is known to facilitate CO2 reduction on Cu, supporting the proposed involvement of CObridge sites in CO coupling mechanisms during CO2 reduction. Ex situ measurements show that the cation dependent CObridge modes correlate with morphological changes of the Cu surface. *

The results presented in the article suggest that a high level of bridge site formation is related to, or facilitated by, the Cu restructuring that happens as a result of the use of the Cs+ cations in the supporting electrolyte. Recent reports have indicated that multiple (bridge) bound CO may be electrochemically inert but this work builds on the emerging evidence that CObridge sites are a key intermediate in the CO–CO coupling step that is required for C2+ formation during eCO2R. *

NanoWorld Pointprobe® CONTR AFM probes for contact mode atomic force microscopy (AFM) were used to characterize the morphology of the CU electrode surface before bulk electrolysis and after bulk electrolysis.*

Fig. 5 from Liam C. Banerji et al. “Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy”: AFM images showing surface morphology of the Cu electrode surface (a) before bulk electrolysis, after bulk electrolysis in CO2 purged 0.5 M (b) NaHCO3, (c) KHCO3 and (d) CsHCO3 and also in (e) CO purged 0.5 M CsHCO3. Image analysis methods are described in the Experimental section.NanoWorld Pointprobe® CONTR AFM probes for contact mode atomic force microscopy (AFM) were used to characterize the morphology of the CU electrode surface before bulk electrolysis and after bulk electrolysis.
Fig. 5 from Liam C. Banerji et al. “Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy”: AFM images showing surface morphology of the Cu electrode surface (a) before bulk electrolysis, after bulk electrolysis in CO2 purged 0.5 M (b) NaHCO3, (c) KHCO3 and (d) CsHCO3 and also in (e) CO purged 0.5 M CsHCO3. Image analysis methods are described in the Experimental section of the original article.

*Liam C. Banerji, Hansaem Jang, Adrian M. Gardner and Alexander J. Cowan
Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy
Chemical Science 2024, 15, 2889-2897
DOI:   https://doi.org/10.1039/D3SC05295H

The article “Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy” by Liam C. Banerji, Hansaem Jang, Adrian M. Gardner and Alexander J. Cowan is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/.

Meet us at Arablab 2023

NanoWorld AG CEO Manfred Detterbeck is @arablab which is currently being held from 19 – 21 September 2023 at Dubai World Trade Centre.  Will we meet you there too?

Opening hours:

19 – 20 Sept: 10.00 – 18.00

21 Sept: 10.00 – 17.00

NanoWorld AFM probes CEO Manfred Detterbeck at Arablab 2023 in Dubai this week. Don't hesitate to catch up with him on the news on AFM probes when you meet him.
NanoWorld CEO Manfred Detterbeck at Arablab 2023

Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction

The emergence of multiple antibiotic-resistant bacteria, notably, pan-resistant Gram-negative pathogens, which are equipped with an outer membrane barrier of low permeability to antibiotics, has become an important challenge in recent decades following the overuse of antibiotics in humans and animals. *

In particular, the foodborne enteric pathogen Escherichia coli O157:H7 has caused severe or deadly illness cases worldwide. *

Among E. coli O157 isolates, serotype O157:H7 is the most common enteric pathogen isolated from patients with bloody diarrhea and it is also frequently found in non-bloody diarrhea samples. Many of its clinical isolates from humans and animals as well as isolates from contaminated food have been found to develop resistance to several antibiotics. *

Following the first isolation of mastoparan, the most abundant peptide in the hornet or wasp venom, from Vespula lewisii, many homologs of mastoparan were isolated from various hornets and solitary wasps. *

Mastoparan homologs are cationic tetradecapeptides with membrane permeabilizing activity and antimicrobial activity on various bacteria, mast cell degranulation activity, and hemolytic activity. *

In the article “Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction” Chun-Hsien Lin, Ching-Lin Shyu, Zong-Yen Wu, Chao-Min Wang, Shiow-Her Chiou, Jiann-Yeu Chen, Shu-Ying Tseng, Ting-Er Lin, Yi-Po Yuan, Shu-Peng Ho, Kwong-Chung Tung, Frank Chiahung Mao, Han-Jung Lee and Wu-chun Tu investigate the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7.*

Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3–11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 μg mL−1 for E. coli O157:H7 and four to eight μg mL−1 for the latter two isolates. *

Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5′-poly(A) leader sequence at the 5′-UTR known for the advantage in cap-independent translation. *

This is the first report about the physicochemical adaptation of 3–11 amphipathic helices among mastoparans or antimicrobial peptides. *

Considering that E. coli O157:H7 and clinical isolates are highly resistant to multiple classes of antibiotics, mastoparan-AF, with little or mild effect on animal RBCs, could be an effective and alternative treatment to combat hemolytic E. coli O157:H7 and other pathogenic E. coli.*

The topography of bacteria was measured by a commercial atomic force microscope using NanoWorld Pointprobe® NCSTR AFM probes with a typical resonance frequency of 160 kHz and a typical spring constant of 7.4 N/m, respectively. For image quality, the scan rates of the tip were 0.3–0.6 Hz, with a resolution set of 512 by 256 pixels, and the feedback control parameters were optimized. *

Figure 5 from «Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction» by Chun-Hsien Lin et al.:The topology of mastoparan-AF treated-hemolytic E. coli O157:H7 analyzed by AFM. (A) Two-dimensional (2D) and (B) three-dimensional (3D) images show smooth cell surfaces of untreated hemolytic E. coli O157:H7. (C) A 2D image of mastoparan-AF (32 μg mL−1)-treated hemolytic E. coli O157:H7. Abnormal perforations and dents on the surface of bacteria are indicated by arrows and arrowheads, respectively. The 3D images focusing on two highlighted areas of (C), respectively, reveal (D) a rough cell surface and (E) a hollow tube resulting from perforations at apical ends. (F) A 3D image shows a mastoparan-AF-treated bacterium with a budding vesicle. (G) A 3D image shows mastoparan-AF-treated bacteria with a wrinkled or rough surface. (H) Magnification of portion of (G) displays, in high resolution, the surface roughness of a mastoparan-AF-treated bacterium. The topography of bacteria was measured by a commercial atomic force microscope using NanoWorld Pointprobe® NCSTR AFM probes with a typical resonance frequency of 160 kHz and a typical spring constant of 7.4 N/m, respectively. For image quality, the scan rates of the tip were 0.3–0.6 Hz, with a resolution set of 512 by 256 pixels, and the feedback control parameters were optimized. *
Figure 5 from «Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction» by Chun-Hsien Lin et al.:
The topology of mastoparan-AF treated-hemolytic E. coli O157:H7 analyzed by AFM. (A) Two-dimensional (2D) and (B) three-dimensional (3D) images show smooth cell surfaces of untreated hemolytic E. coli O157:H7. (C) A 2D image of mastoparan-AF (32 μg mL−1)-treated hemolytic E. coli O157:H7. Abnormal perforations and dents on the surface of bacteria are indicated by arrows and arrowheads, respectively. The 3D images focusing on two highlighted areas of (C), respectively, reveal (D) a rough cell surface and (E) a hollow tube resulting from perforations at apical ends. (F) A 3D image shows a mastoparan-AF-treated bacterium with a budding vesicle. (G) A 3D image shows mastoparan-AF-treated bacteria with a wrinkled or rough surface. (H) Magnification of portion of (G) displays, in high resolution, the surface roughness of a mastoparan-AF-treated bacterium.

*Chun-Hsien Lin, Ching-Lin Shyu, Zong-Yen Wu, Chao-Min Wang, Shiow-Her Chiou, Jiann-Yeu Chen, Shu-Ying Tseng, Ting-Er Lin, Yi-Po Yuan, Shu-Peng Ho, Kwong-Chung Tung, Frank Chiahung Mao, Han-Jung Lee and Wu-chun Tu
Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction
Membranes 2023, 13(2), 251
DOI: https://doi.org/10.3390/membranes13020251

The article “Antimicrobial Peptide Mastoparan-AF Kills Multi-Antibiotic Resistant Escherichia coli O157:H7 via Multiple Membrane Disruption Patterns and Likely by Adopting 3–11 Amphipathic Helices to Favor Membrane Interaction” by Chun-Hsien Lin, Ching-Lin Shyu, Zong-Yen Wu, Chao-Min Wang, Shiow-Her Chiou, Jiann-Yeu Chen, Shu-Ying Tseng, Ting-Er Lin, Yi-Po Yuan, Shu-Peng Ho, Kwong-Chung Tung, Frank Chiahung Mao, Han-Jung Lee and Wu-chun Tu is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.