Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells

The optimization of nonradiative recombination losses through interface engineering is key to the development of efficient, stable, and hysteresis-free perovskite solar cells (PSCs). *

In the article “Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells”  Shrabani Panigrahi, Hussein O. Badr, Jonas Deuermeier, Santanu Jana, Elvira Fortunato, Rodrigo Martins and Michel W. Barsoum, for the first time in solar cell technology, present a novel approach to interface modification by employing one-dimensional lepidocrocite (henceforth referred to as 1DL) TiO2-based nanofilaments, NFs, between the mesoporous TiO2 (mp TiO2) and halide perovskite film in PSCs to improve both the efficiency and stability of the devices. *

The 1DLs can be easily produced on the kilogram scale starting with cheap and earth-abundant precursor powders, such as TiC, TiN, TiB2, etc., and a common organic base like tetramethylammonium hydroxide. Notably, the 1DL deposition influenced perovskite grain development, resulting in a larger grain size and a more compact perovskite layer. Additionally, it minimized trap centers in the material and reduced charge recombination processes, as confirmed by the photoluminescence analysis. *

The overall promotion led to an improved power conversion efficiency (PCE) from 13 ± 3.2 to 16 ± 1.8% after interface modification. The champion PCE for the 1DL-containing devices is 17.82%, which is higher than that of 16.17% for the control devices. *

The passivation effect is further demonstrated by evaluating the stability of PSCs under ambient conditions, wherein the 1DL-containing PSCs maintain ∼87% of their initial efficiency after 120 days. *

The article not only presents cost-effective, novel, and promising materials for cathode interface engineering but also an effective approach to achieve high-efficiency PSCs with long-term stability devoid of encapsulation. *

To get a deeper understanding of the enhanced photocurrent production within the perovskite layer, the authors used photoconductive atomic force microscopy (pcAFM) to map the photocurrent distribution at the nanoscale for the same perovskite layers on both types of ETLs. *

pcAFM measurements were taken in air with a commercially available Atomic Force Microscopy by using conductive PtIr-coated NanoWorld Pointprobe® CONTPt silicon AFM probes (typical resonance frequency = 13 kHz, typical spring constant = 0.2 N/m) and a current detector holder. A light source was used to light the samples. *

Figure 4 from Shrabani Panigrahi et al. 2024 “Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells”:Characterization of the perovskite films (MAPbI3 is denoted as MAPI inside figure) deposited on mp TiO2 and mp/1DL ETLs: (a, b) FESEM micrographs, (c) XRD patterns, (d) UV/vis absorption, and (e) PL spectra. (f, h) AFM topography images and (g, i) corresponding pcAFM photocurrent images of the perovskite layers deposited on mp TiO2 and mp/1DL TiO2 ETLS, respectively. (j) Photocurrent line profiles across the perovskite layers. pcAFM measurements were taken in air using conductive PtIr-coated NanoWorld Pointprobe® CONTPt silicon AFM probes
Figure 4 from Shrabani Panigrahi et al. 2024 “Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells”:
Characterization of the perovskite films (MAPbI3 is denoted as MAPI inside figure) deposited on mp TiO2 and mp/1DL ETLs: (a, b) FESEM micrographs, (c) XRD patterns, (d) UV/vis absorption, and (e) PL spectra. (f, h) AFM topography images and (g, i) corresponding pcAFM photocurrent images of the perovskite layers deposited on mp TiO2 and mp/1DL TiO2 ETLS, respectively. (j) Photocurrent line profiles across the perovskite layers.

*Shrabani Panigrahi, Hussein O. Badr, Jonas Deuermeier, Santanu Jana, Elvira Fortunato, Rodrigo Martins and Michel W. Barsoum
Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells
ACS Omega 2024, 9, 51, 50820–50829
DOI: https://doi.org/10.1021/acsomega.4c09516

Open Access The article “Interfacial Engineering with One-Dimensional Lepidocrocite TiO2-Based Nanofilaments for High-Performance Perovskite Solar Cells” by Shrabani Panigrahi, Hussein O. Badr, Jonas Deuermeier, Santanu Jana, Elvira Fortunato, Rodrigo Martins and Michel W. Barsoum is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Join us at the Panel Discussion on SPM Cantilevers at SPM Connect today

It’s the second day at #SPMConnect in Washington DC.

There is a Panel Discussion on #SPMCantilevers today at 3:30PM – National Harbor 5.

Our colleagues Manfred Detterbeck (NanoWorld CEO) and Dr. Oliver Krause (NanoWorld R&D team) will be there. Come and join us!

We are looking forward to your questions and an interesting discussion.

NanoWorld AFM probes CEO Manfred Detterbeck in front of a banner at SPM Connect 2024 in Washington DC pointing at the announcement of the panel discussion on SPM cantilevers
Manfred plans to be there. You too?
Dr. Oliver Krause from the NanoWorld AFM probes R&D team beside a banner at SPM Connect 2024 in Washington DC which announces of the panel discussion on SPM cantilevers
Oliver will be there too!

Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes

In the last decades enormous advances have been made in characterizing the atomic and molecular structure of respiratory chain supercomplexes. *

However, it still remains a challenge to stitch this refined spatial atomistic description with functional information provided by biochemical studies of isolated protein material. Development of functional assays that detect respiratory chain complexes in their native membrane environment contribute to address the open questions related to the role played by their association and interactions. *

In the article “Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes” Daniel G. Cava, Julia Alvarez-Malmagro, Paolo Natale, Sandra López-Calcerrada, Iván López-Montero, Cristina Ugalde, Jose Maria Abad, Marcos Pita, Antonio L. De Lacey and Marisela Vélez present a characterization assay in which a functionalized gold electrode is modified with mitochondrial membrane fragments that allows monitoring electrochemically the activity of different respiratory chain complexes immersed in the mitochondrial membrane. *

Daniel G. Cava  et al. measure the intensity of the reducing current of the electron mediator CoQ1 at the electrode surface and its variation upon addition of the corresponding enzymatic substrates. The activities of Complex I, Complex II and Complex III were monitored by the way in which they reduce the current, reflecting the amount of quinone reduced by the complexes in the presence of their substrates. *

The authors detect that CoQ1H2 produced by Complex I remains partially trapped within the membrane and is more easily oxidized by Complex III or the electrode than the quinone reduced by Complex II. *

Atomic Force Microscopy (AFM) was used to image the topography of the membrane modified electrode. NanoWorld Pyrex-Nitride Silicon-Nitride AFM probes (PNP-DB, diving board shaped cantilevers, the short AFM cantilever with a typical force constant of 0.48 N/m and 67 kHz resonance frequency) were used. *

The surfaces analysed were the electrodes. The two surfaces imaged are the same previously polished electrodes used for electrochemical measurements. The microscope sample holder was adapted in-home to support the electrodes. Two surfaces were analysed: the polished gold functionalized with 4-aminothiophenol and the electrode after incubation with mitochondria subparticles prepared similarly to the electrodes used for the electrochemical measurements.*

Fig. 2 from Daniel G. Cava et al 2024 “Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes” QCM and AFM characterization of modified gold. Panel A shows the frequency (left, black) and dissipation (right red) changes detected on a gold covered quartz crystal previously modified with a 4-ATP after injection in the chamber of the mitochondrial fragments at the time point indicated by the thick arrow. Panel B show AFM images of the surface topography of a modified gold electrode before (left) and after (right)incubation with the mitochondrial membrane. The inset below shows the height profile of the lines indicated in the images. NanoWorld Pyrex-Nitride Silicon-Nitride AFM probes (PNP-DB, the short AFM cantilever with a typical force constant of 0.48 N/m and 67 kHz resonance frequency) were used.
Fig. 2 from Daniel G. Cava et al 2024 “Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes”
QCM and AFM characterization of modified gold. Panel A shows the frequency (left, black) and dissipation (right red) changes detected on a gold covered quartz crystal previously modified with a 4-ATP after injection in the chamber of the mitochondrial fragments at the time point indicated by the thick arrow. Panel B show AFM images of the surface topography of a modified gold electrode before (left) and after (right)incubation with the mitochondrial membrane. The inset below shows the height profile of the lines indicated in the images.

*Daniel G. Cava, Julia Alvarez-Malmagro, Paolo Natale, Sandra López-Calcerrada, Iván López-Montero, Cristina Ugalde, Jose Maria Abad, Marcos Pita, Antonio L. De Lacey and Marisela Vélez
Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes
Electrochimica Acta, Volume 484, 20 April 2024, 144042
DOI: https://doi.org/10.1016/j.electacta.2024.144042

 

The article “Electrochemical detection of quinone reduced by Complex I Complex II and Complex III in full mitochondrial membranes” by Daniel G. Cava, Julia Alvarez-Malmagro, Paolo Natale, Sandra López-Calcerrada, Iván López-Montero, Cristina Ugalde, Jose Maria Abad, Marcos Pita, Antonio L. De Lacey and Marisela Vélez is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.