NanoWorld AG CEO Manfred Detterbeck is attending @nanokorea , the 17th International Nanotech Symposium & Exhibition , which is currently being held from July 2-5 2019 at KINTEX, Korea. Will we meet you there too?
Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters
Polydimethylsiloxane (PDMS) is a promising biomaterial for generating artificial extracellular matrix (ECM) like patterned topographies, yet its hydrophobic nature limits its applicability to cell-based approaches.” Although plasma treatment can enhance the wettability of PDMS, the surface is known to recover its hydrophobicity within a few hours after exposure to air. *
To investigate the capability of a novel PDMS-type (X-PDMS) for in vitro based assessment of physiological cell properties, the authors of the article “Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters” cited here, designed and fabricated plane as well as nano- and micrometer-scaled pillar-patterned growth substrates using the elastomer types S-, H- and X-PDMS, which were fabricated from commercially available components.*
To assess their applicability to cell-based approaches, Marina Scharin-Mehlmann et al., characterized the generated surfaces using water contact angle (WCA) measurement and atomic force microscopy (AFM) as indicators of wettability and roughness, respectively.*
The surface roughness of the samples was determined by Atomic Force Microscopy in tapping mode. For plane and flat pillar patterned PDMS (130 and 190 nm nominal pillar height) surfaces, a standard tapping mode AFM probe ( Pointprobe® NCHR, NanoWorld) was used. For patterned surfaces with pillars of 1,800 nm height tilt compensated high-aspect-ratio AFM probes (AR5T-NCHR, NanoWorld) were used. The scanning area was 50 × 50 μm2, the scanning rate 0.5 Hz. In this scanning area each roughness value (root mean square roughness Rq) was evaluated from five 10 × 10 μm2 areas.*
*Marina Scharin-Mehlmann, Aaron Häring, Mathias Rommel, Tobias Dirnecker, Oliver Friedrich, Lothar Frey and Daniel F. Gilbert
Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters
Frontiers in Bioengineering and Biotechnology. 2018; 6: 51
DOI: 10.3389/fbioe.2018.00051
Please follow this external link to view the full article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938557/
Open Access: The article «Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters» by Marina Scharin-Mehlmann, Aaron Häring, Mathias Rommel, Tobias Dirnecker, Oliver Friedrich, Lothar Frey and Daniel F. Gilbert (2018) is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM
Composite carbon nanofibres (CNFs) are highly interesting materials which are usable in a wide array of applications e.g. electrode materials for biosensors, lithium ion batteries, fuel cells and supercapacitors.*
In their paper “Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM” Wael Ali, Valbone Shabani, Matthias Linke, Sezin Sayin, Beate Gebert, Sedakat Altinpinar, Marcus Hildebrandt, Jochen S. Gutmann and Thomas Mayer-Gall present a study on the electrical properties of composite carbon nanofibres (CNFs) using current-sensitive atomic force microscopy (CS-AFM).*
This technique makes it possible to explore the electrical properties of single fibers and hence derive relationships between the structural features and the electrical properties.
NanoWorld AFM probes with conductive PtIr5 coated silicon tips (force constant 2.8 N m−1, length 240 μm, mean width 35 μm and a thickness of 3 μm, and tip height 10–15 μm) Arrow-EFM were used.*
The results presented in the paper show that the composite CNFs have a higher electrical conductivity than the neat CNFs and both the average diameter of the fibers and the electrical conductivity increase with an increasing AgNP content.*
*Wael Ali,
Valbone Shabani, Matthias Linke, Sezin Sayin, Beate Gebert, Sedakat Altinpinar,
Marcus Hildebrandt, Jochen S. Gutmann, Thomas Mayer-Gall
Electrical conductivity of silver
nanoparticle doped carbon nanofibres measured by CS-AFM
RSC Adv., 2019, 9, 4553-4562
DOI: 10.1039/C8RA04594A
Please follow this external link to the full article: https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra04594a
Open Access: The article “Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM” by Wael Ali, Valbone Shabani, Matthias Linke, Sezin Sayin, Beate Gebert, Sedakat Altinpinar, Marcus Hildebrandt, Jochen S. Gutmann and Thomas Mayer-Gall is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/.