HS-AFM video of Covid’s Docking Method

Johannes Kepler University in Linz Austria has published a High-Speed Atomic Force Microscopy video of human lectin CLEC4G binding to glycans on a SARS-CoV-2 spike. This video was recorded by Daniel Canena and Peter Hinterdorfer and is, according to the two researchers, the first short film of the active structure the virus uses to attach to cell

Congratulations!

NanoWorld Ultra-Short AFM Cantilevers of the USC-F1.2-k0.15 type were used for the HS-AFM video.

Please follow this external link to the Johannes Keppler University webpage to watch the video: https://www.jku.at/en/news-events/news/detail/news/film-of-covids-docking-method/ or have a look on Youtube

 

NanoWorld Ultra-Short Cantilevers (USC) for High-Speed AFM (HS-AFM)
NanoWorld Ultra-Short Cantilevers (USC) for High-Speed AFM (HS-AFM)

High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action

The current pandemic is not the only health threat worldwide. Another worry is the increasing antibiotic resistance which increases the fear to run out of effective antibiotics.

This is one of the reasons why antimicrobial peptides (AMPs) are gaining more and more interest.

The lipopeptide Daptomycin ( DAP ) has been therapeutically used as a last resort antibiotic against multidrug-resistant enterococci and staphylococci in the past. Unfortunately, some strains have become resistant to Dap in recent years. There still is a knowledge-gap on the details of Dap activity. It is therefore important to understand the structure-activity relationships of AMPs on membranes in order to develop more antibiotics of this type as a countermeasure to the spread of resistance.*

High Speed Atomic Force Microscopy ( HS-AFM ) makes it possible to observe dynamic biological processes on a molecular level.

In the article “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso describe how, by using the possibilities offered by high speed atomic force microscopy, they were able to confirm some up until now hypothetical models and additionally detected some previously unknown molecular mechanisms. *

The HS-AFM imaging made it possible for the authors to observe the development of the dynamics of interaction at the molecular-level over several hours. *

They investigated the lipopeptide Daptomycin under infection-like conditions and could confirm Dap oligomerization and the existence of half pores. *

They also mimicked bacterial resistance conditions by increasing the CL-content in the membrane. *

By correlating the results of other research techniques such as FRET, SANS, NMR, CD or electrophysiology techniques with the results they achieved with high speed atomic force microscopy F. Zuttion et al. were able to confirm several, previously, hypothetical models, and detect several unknown molecular mechanisms. *

It is to be hoped that the possibilities offered by HS-AFM imaging will stimulate new models and insight on the structure-activity relationship of membrane-interacting molecules and also open up the possiblity to increase the throughput of screening of molecular candidates considerably. *

NanoWorld USC ( Ultra-Short AFM Cantilevers) of the USC-F1.2-k0.15 type, which are specially designed for the use in high speed atomic force microscopy, were used for the HS-AFM imaging described in the article cited below. These AFM probes have a typical resonance frequency of 1200 kHz and have a wear resistant AFM tip made from high density carbon.

Figure 4 Sub-MIC Dap on POPG at 37 °C. Tens of minutes from “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion et al. NanoWorld Ultra-Short AFM Cantilevers USC-F1.2-k0.15 AFM probes for HS-AFM imaging were used.
Figure 4 Sub-MIC Dap on POPG at 37 °C. Tens of minutes from “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion et al.
Intermediate stages a A new structure appeared: dimples, zones of thinner membrane thickness, whose diameter was in the range 7 ± 2 nm. Most dimples diffuse, but some remained static (colour scale: 3 nm). Movie details: frame rate 97 ms; zoom of a full image of 150 nm × 90 nm and 256 × 160 pixels. b The dimple diffusion consisted of swinging trajectories, implying membrane-mediated dimple-dimple attraction (colour scale: 3 nm). b, right, Energy profile of the interaction of the dimples obtained derived from 120 centre-to-centre distance measurements that contains as the oligomers two energy minima. Movie details: frame rate 83 ms; full image of 150 nm × 150 nm and 256 × 256 pixels. c In some membrane zones, clusters of dimples, reminiscent of cubic phases, developed (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 90 nm × 60 nm and 256 × 160 pixels. d The clusters of dimples were moderately dynamical in time, with moderate internal rearrangements (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 25 nm × 16 nm and 256 × 160 pixels. e The other deformation found was elongated-humps on top of the POPG membrane. e, left, An elongated-hump in the proximity of a cluster of dimples (colour scale: 4 nm). e, right, A close-up and a profile of an elongated-hump. Additional images of elongated-humps on Supplementary Fig. 1. Movie details: frame rate 479 ms; zoom of full image of 250 nm × 200 nm and 300 × 256 pixels. f It was observed that the dimples and the elongated-humps fused and gave yield to pores of toroidal structure where a protruding ring surrounds the pore (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 40 nm × 40 nm and 256 × 160 pixels.

*Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso
High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action
Nature Communications volume 11, Article number: 6312 (2020)
DOI: https://doi.org/10.1038/s41467-020-19710-z

Please follow this external link to read the full article: https://rdcu.be/ciaW2

Open Access : The article “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects

Topological objects and defects (e.g. skyrmions, domain walls, vortices,) in condensed matters have attracted a lot of interest as a field for exploring emerging exotic phenomena and functionalities.*

In materials with ferroic order, these topological objects can also be manipulated and controlled by external fields without disrupting their host lattice, making them promising elemental building blocks for potential configurable topological nanoelectronics. *

Ferroelectric topological objects provide a promising area for investigating emerging physical properties that could potentially be utilized in future nanoelectronic devices. *

In the article “Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects” Wenda Yang, Guo Tian, Yang Zhang, Fei Xue, Dongfeng Zheng, Luyong Zhang, Yadong Wang, Chao Chen, Zhen Fan, Zhipeng Hou, Deyang Chen, Jinwei Gao, Min Zeng, Minghui Qin, Long-Qing Chen, Xingsen Gao and Jun-Ming Liu demonstrate the existence of metallic conduction superfine (<3 nm) channels in two types of exotic topological defects, namely a quadrant vortex core or simply vortex core and a quadrant center domain core or simply center core, in an array of BiFeO3 (BFO) nanoislands.*

The authors discover via the phase-field simulation that the superfine metallic conduction channels along the center cores arise from the screening charge carriers confined at the core region, whereas the high conductance of vortex cores results from a field-induced twisted state. These conducting channels can be reversibly created and deleted by manipulating the two topological states via electric field, leading to an apparent electroresistance effect with an on/off ratio higher than 103.*

The findings by Wenda Yang et al. open up the possibility of using these functional one-dimensional topological objects in high-density nanoelectronic devices, e.g. nonvolatile memory.*

NanoWorld PlatinumIdridium5 coated Arrow-EFM AFM probes were used to examine the domain structures by vector piezoresponse force microscopy (PFM). By using vector PFM mode, the authors could simultaneously map the vertical and lateral piezoresponse signals from the nanoisland one by one.*

NanoWorld Conductive Diamond coated AFM probes CDT-NCHR were used for the conductive current distribution maps, current–voltage (I–V) measurements that were characterized by conductive atomic force microscopy (C-AFM).

Fig. 2 from “Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects” by Wenda Yang et al.:
The domain structures and corresponding conductive properties for both a vortex and a center topological states confined in two nanoislands.
a, b PFM and C-AFM images for both a vortex state (a) and a center state (b), the micrographs from the left to the right are PFM vertical phase images illustrating the uniform upward vertical polarization components for both nanoislands, the PFM lateral phase images recorded at sample rotation of 0o and 90o to evaluate the directions of lateral polarization components respectively along x axis ([100] axis) and y axis ([100] axis), the lateral polarization vector direction maps derived from the PFM data, and corresponding C-AFM maps. The thick arrows aside the PFM images mark the directions of the cantilever for each PFM scan, and the fine arrows inside the images mark the directions of polarization components perpendicular to the directions of the cantilever. c, d Extracted current spatial profiles from the C-AFM maps for both the vortex (c) and the center (d) cores, extracted from a and b, respectively. The inserts in c and d illustrate the C-AFM maps and schematic local polarization configurations for the two topological cores. e Temperature-dependent conductive current (I–V) curves for both topological cores and domain walls.*

*Wenda Yang, Guo Tian, Yang Zhang, Fei Xue, Dongfeng Zheng, Luyong Zhang, Yadong Wang, Chao Chen, Zhen Fan, Zhipeng Hou, Deyang Chen, Jinwei Gao, Min Zeng, Minghui Qin, Long-Qing Chen, Xingsen Gao and Jun-Ming Liu
Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects
Nature Communications volume 12, Article number: 1306 (2021)
DOI: https://doi.org/10.1038/s41467-021-21521-9

Please follow this external link to read the full article: https://rdcu.be/cg0JY

Open Access : The article “Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects” by Wenda Yang, Guo Tian, Yang Zhang, Fei Xue, Dongfeng Zheng, Luyong Zhang, Yadong Wang, Chao Chen, Zhen Fan, Zhipeng Hou, Deyang Chen, Jinwei Gao, Min Zeng, Minghui Qin, Long-Qing Chen, Xingsen Gao and Jun-Ming Liu is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.